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Abstract— High-Performance Computing (HPC) and 

Artificial Intelligence (AI) workloads typically demand 
substantial memory bandwidth and, to a degree, memory 
capacity. CXLTM memory expansion modules, also known as 
CXL “type-3” devices, enable enhancements in both memory 
capacity and bandwidth for server systems by utilizing the CXL 
protocol which runs over the PCIe interfaces of the processor. 
This paper discusses experimental findings on achieving 
increased memory bandwidth for HPC and AI workloads using 
Micron’s CXL modules. This is the first study that presents real 
data experiments utilizing eight CXL E3.S (x8) Micron CZ122 
devices on the Intel® Xeon® 6 processor 6900P (previously 
codenamed Granite Rapids AP) featuring 128 cores, alongside 
Micron DDR-5 memory operating at 6400 MT/s on each of the 
CPU’s 12 DRAM channels. The eight CXL memories were set 
up as a unified NUMA configuration, employing software-based 
page level interleaving mechanism, available in Linux kernel 
v6.9+, between DDR5 and CXL memory nodes to improve 
overall system bandwidth. Memory expansion via CXL boosts 
read-only bandwidth by 24% and mixed read/write bandwidth 
by up to 39%. Across HPC and AI workloads, the geometric 
mean of performance speedups is 24%. 

Keywords—DDR5, CXL, HPC, software-interleaving, 
bandwidth, LLM inferencing, AI vector search 

I. INTRODUCTION 
High-performance and AI workloads encompass important 
computational tasks that demand substantial processing and 
memory resources. These workloads are frequently utilized 
in scientific research, simulations, and data-intensive 
applications, including computational fluid dynamics, 
weather forecasting, and DNA sequencing. 

 
Alongside HPC, AI plays a crucial role in analyzing large 
datasets and driving innovations across various fields. For 
example, LLM inference and vector search in Retrieval- 
Augmented Generation (RAG) are crucial workloads as they 
enable efficient access to relevant information and enhance 
the quality of generated responses, making AI interactions 
more accurate and contextually aware. 

This paper presents experimental work conducted by Micron 
and Intel, which examines the performance of AI and HPC 
workloads on the Intel® Xeon® 6 processor 6900P series now 
in full production, paired with Micron CZ122 CXL devices. 
The study quantifies the performance benefits of utilizing 
Micron CZ122 devices in HPC/AI workloads, noting 
improvements in performance by expanding system memory 
bandwidth using CXL memory expansion, beyond local 

DRAM modules. The memory bandwidth expansion enabled 
by CXL is essential for enhancing the performance of HPC 
and AI workloads. 

 
While CXL has primarily aimed at expanding memory 
capacity, its advantages for bandwidth-intensive workloads 
still need to be thoroughly explored and quantified in real 
CXL-capable systems, utilizing as many supported PCIe 
lanes as possible. In particular, the unique bandwidth 
characteristics of local DRAM and CXL memory can differ 
depending on the read/write ratio of workloads, creating 
challenges in optimizing the capabilities of each memory tier 
in terms of memory bandwidth. For this purpose, a software- 
based weighted interleaving method, available in mainstream 
Linux kernel distribution, is employed for optimization. 

II. PLATFORM CONFIGURATION 

A. Intel Xeon 6 CPU System (Avenue City platform) 
The 6900P CPU supports 6 x16 (96) PCIe 5.0 lanes. The lanes 
support CXL 2.0 Type-3 devices, allowing for memory 
expansion. The CPU supports any four x16 lanes to be used as 
CXL links. 

 

Figure 1. System Architecture of Intel Xeon 6 processor 6900P with 
128 cores and 12x Micron DDR5 6400 MT/s. All 12 local DRAM 
channels are designated as NUMA node 0 (HEX mode), while all 
the Micron’s CXL modules (8 in total) are brought up as separate 
NUMA node 1. 
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As the focus of this paper is on demonstrating the 
effectiveness of increasing bandwidth rather than capacity, 
smaller memory modules were intentionally chosen for both 
native DRAM (64 GB) and CXL (128 GB) modules. 

 
The system configuration employed (Figure 1) facilitates the 
management of various memory tiers by efficiently 
organizing and distinguishing between the locally attached 
DRAM and the CXL memory modules. 

Traditionally, the Linux kernel has managed memory 
allocation across multiple NUMA (Non-Uniform Memory 
Access) nodes. Each of the memory types (either DRAM or 
CXL) is represented as a single NUMA node, allowing the 
system to use existing abstractions to manage and allocate 
memory across these two different pools. 

 
Recently, NUMA nodes have been used to categorize 
memory into performance tiers, while existing allocation 
policies can place memory on specific NUMA nodes. For 
example, when brought up as system memory, CXL memory 
is treated as a separate NUMA node. 

 
To showcase the advantages of using CXL memories, the 
system configuration is designed so that the local RDIMM 
slots are filled with the fastest available Micron RDIMMs, 
delivering a bandwidth of 6400 MT/s per slot. All 12 
available slots are populated – totaling 768GB memory 
capacity. As shown in Figure 2, eight Micron CZ122 128GB 
CXL devices are utilized, occupying 64 PCIe lanes and 
providing a total additional memory capacity of 1TB. 

 

Figure 2. Configuration of Micron CZ122 CXL modules with an 
Intel Xeon-6 CPU on an Avenue City platform involves connecting 
four cards directly to the backplane, while the other four cards are 
attached using riser cards in two CME slots. 

Additional details on the platform are shown in the table 
below. 

 

OS Red Hat Enterprise Linux 9.4 
Kernel 6.11.6 (With support for weighted 

memory interleaving) 

B. Memory Expansion with Micron CZ122 CXL modules 
Micron's CZ122 CXL modules are currently in production 
and have demonstrated reliable performance across various 
workloads, effectively showcasing memory expansion over 
CXL interface. The addition of these CXL modules enhance 
both the memory bandwidth and the capacity of the server, 
building on what is already provided by the RDIMM slots; 
that is, delivering memory bandwidth expansion. 

Optimally placing newly allocated pages is a complex issue. 
NUMA interleaving, a traditional approach under Linux, 
evenly distributes pages across memory nodes for consistent 
performance. However, it lacks the ability to consider 
memory tier performance differences. 

 
A recent series of patches has added weighted NUMA 
interleaving capabilities to the Linux kernel, allowing for 
more strategic memory allocation based on performance 
characteristics of different memory nodes in system. This 
strategy optimizes system memory bandwidth by effectively 
utilizing bandwidth both local DRAM and CXL memory 
nodes. The weighted-interleaving feature, introduced in 
Linux kernel version 6.9+ and influenced significantly by 
Micron’s contributions, enables the adjustment of weights 
assigned to individual pages across various memory types, 
thereby enhancing overall memory bandwidth (as illustrated 
in Figure 2). 

 

 
Figure 3. Software-based weighted interleaving (M:N) allowing 
placing M pages on local DRAM and N pages on CXL memory for 
optimized system memory bandwidth. 

Platform Intel Avenue City 
CPU family Intel® Xeon® 6 6900P series with 128 

cores 
Native DRAM Micron DDR5-64GB (6400MTs) 

(12 modules ~ 768 GB) – HEX mode 
CXL Memory Micron CZ122 – 128GB * 8 

(8 modules E3.S form factor ~ 1TB) 
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Figure 4. Bandwidth vs Latency curves using DRAM only vs DRAM + CXL. The interleaving weights are represented as pairs 
(DRAM, CXL). It’s important to note that at low bandwidth, a greater number of pages (9) are allocated to DRAM compared to 
CXL (1), as indicated by the weights (9,1). Conversely, under high load conditions, the optimal interleaving weights shift to (3,1). 

 

III. NATIVE DRAM VS. CXL ATTACHED MEMORY 
PERFORMANCE CHARACTERISTICS 

Before the performance analysis of the actual workloads is 
introduced, the performance characteristics of local DRAM 
and CXL memory regarding bandwidth at various read-to- 
write ratios of memory traffic will be presented and 
discussed1. 

 

 
Workload Memory 

Tier 
Bandwidth 
(in GB/s) 

Bandwidth 
(Normalized) 

CXL over 
DRAM 

(Theoretical 
gains with CXL) 

Read only DRAM 556 1.00 - 
3R,1W DRAM 486 0.87 - 
2R,1W DRAM 474 0.85 - 
2R,1W 
(non- 

temporal 
W) 

 
DRAM 

 
466 

 
0.84 

 
- 

1R,1W DRAM 446 0.80 - 
 

Read only CXL 205 1.00 37% 
3R,1W CXL 214 1.04 44% 
2R,1W CXL 208 1.01 44% 
2R,1W 
(non- 

temporal 
W) 

 
CXL 

 
189 

 
0.92 

 
41% 

1R,1W CXL 214 1.04 48% 

 
The performance data from table above indicates that DRAM 
performs optimally in read-only workloads, but its 
performance diminishes when the number of writes is equal 
to or exceeds the number of reads. For instance, in a workload 
with a 1:1 read to write ratio, DRAM's performance drops by 
20% compared to a read-only scenario. 

 
Conversely, CXL memory demonstrates the opposite trend 
due to the bidirectional nature of the PCIe interface, resulting 
in better performance for mixed read-write workloads. 
Another noteworthy observation is that CXL memory shows 
an 8% decrease in bandwidth during a non-temporal write 

workload. Therefore, it's crucial to analyze the read-to-write 
ratio of a workload to identify the optimal interleaving 
strategy for utilizing DRAM and CXL memory tiers 
effectively. 

 
As shown in Figure 4, it's also important to note that memory 
latency is reduced when using CXL. This is because 
workloads that rely solely on local DRAM can be bandwidth- 
limited, leading to significantly higher memory access 
latency (loaded latency) under heavy loads. In contrast, 
combining DRAM with CXL memory through optimized 
weighted interleaving results in lower latency, despite CXL 
memory having a higher unloaded latency. 

At each data point on the “DRAM + CXL” curve, the 
interleave ratio of DRAM and CXL is displayed. Under low 
bandwidth conditions, it's advantageous to utilize more 
DRAM due to its lower latency compared to CXL memory 
(9:1 ratio). However, as the load increases, the reliance on 
DRAM decreases while the emphasis shifts towards CXL 
memory. Ultimately, a 3:1 ratio was identified as optimal 
under maximum load conditions for a read-only workload 
traffic. 

 
When comparing the use of CXL memory alongside local 
DRAM, various performance improvements can be observed. 
For instance, in a read-only scenario (where DRAM excels) 
the addition of CXL memory bandwidth results in a 24% 
performance boost. The upcoming experiments will 
demonstrate that for mixed read/write workloads, the 
performance improvements with CXL, attributed to balanced 
memory interleaving, can reach as high as 38%. The 
following sections will demonstrate that for different 
workload mixes, we may need to adjust the interleaving 
weights based on the read-to-write ratio of the workload. 

 
 

1 Performance results are derived from testing in the specified 
configuration (Section II.A). Results may vary, so it is 
recommended to reconfirm them in your setting. 
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IV. WORKLOAD ANALYSIS 

A. Intel MLC (Microbenchmark) 
Intel MLC (Memory Latency Checker) is a microbenchmark 
tool designed to assess memory latencies and bandwidth in 
computer systems. It helps analyze how these metrics change 
under varying loads, providing insights into the performance 
of the memory subsystem. 

 
Utilizing the software-based interleaving kernel feature, 
memory allocation between DRAM and CXL is determined 
based on a user-defined ratio. Bandwidth measurements are 
obtained by running the MLC workloads with different 
read:write ratios. 

 
The weights for each memory tier are given in terms of the 
number of pages allocated on DRAM versus CXL memory. 
For example, a weight of 3 (DRAM) and weight of 1 (CXL) 
means 75% of the pages (and eventually the associated 
memory traffic) allocated on DRAM, while 25% allocated to 
CXL memory. The following tables presents the results of 
MLC for various read:write ratios. 

 
Workload: R (read-only) 

 
Weight 

(DRAM) 
Weight 
(CXL) 

BW 
(in GB/s) 

BW 
(Normalized) 

1 0 556 1.00 

1 1 394 0.71 

2 1 590 1.06 

5 2 669 1.20 

3 1 690 1.24 

4 1 677 1.22 

0 1 205 0.37 

 
As shown above, MLC results for the R (Read-only) 
workload indicate a 24% increase in bandwidth with a 3:1 
interleave ratio of DRAM to CXL. 

 
Workload: W2 (2W, 1R) 

 
Weight 

(DRAM) 
Weight 
(CXL) 

BW 
(in GB/s) 

BW 
(Normalized) 

1 0 474 1.00 
1 1 422 0.89 
2 1 624 1.32 
5 2 636 1.34 
3 1 617 1.30 
4 1 586 1.24 
0 1 208 0.44 

 
As shown above, MLC results for the W2 (2W, 1R) workload 
indicate a 34% increase in bandwidth with a 5:2 interleave 
ratio of DRAM to CXL. 

Workload: W5 (1W, 1W) 
 

Weight 
(DRAM) 

Weight 
(CXL) 

BW 
(in GB/s) 

BW 
(Normalized) 

1 0 446 1.00 
1 1 409 0.92 
2 1 621 1.39 
5 2 614 1.37 
3 1 585 1.31 
4 1 551 1.24 
0 1 214 0.48 

 
As shown above, MLC results for the W5 (1W, 1R) workload 
indicate a 39% increase in bandwidth with a 5:2 interleave 
ratio of DRAM to CXL. 

 
Workload: W10 (2R, 1W non-temporal) 

 
Weight 

(DRAM) 
Weight 
(CXL) 

BW 
(in GB/s) 

BW 
(Normalized) 

1 0 466 1.00 
1 1 390 0.84 
2 1 533 1.14 
5 2 607 1.30 
3 1 601 1.29 
4 1 572 1.23 
0 1 189 0.41 

 
As shown above, MLC results for the W10 (2R, 1W non- 
temporal) workload indicate a 30% increase in bandwidth 
with a 5:2 interleave ratio of DRAM to CXL. 

In summary, as seen in the tables above, for the 100% Read 
workload, splitting the pages between DRAM and CXL in a 
3:1 ratio (3 pages in DRAM, 1 in CXL) results in a 24% 
bandwidth gain compared to using only DRAM. 

 
For the W2, W3, W5, and W10 MLC workloads, the optimal 
performance occurs with a DRAM to CXL ratio of 5 to 2. 
This configuration yields a 34-38% bandwidth increase over 
DRAM alone. The MLC data shows that adding CXL 
memory significantly boosts bandwidth. 

 
It is worth noticing that the MLC data provides us with a 
upper bound on the performance gains when the workload is 
memory-bandwidth bound given a particular read:write ratio. 

For instance, LLM inference predominantly involves read- 
only traffic, with bottlenecks generally arising at the token 
generation stage, which necessitates repeated reading of 
model weights for each token. Consequently, the optimal 
interleave ratio should be 3:1 for DRAM to CXL memory. 

B. AI Workloads 
The Intel Xeon 6 processor with P-cores family is optimized 
for HPC and AI workloads, enhancing performance in deep 
learning and machine learning applications. Optimizations 
take advantage of Intel® Advanced Vector Extensions 512 
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(Intel® AVX-512) Vector Neural Network Instructions 
(VNNI) and Intel® Advanced Matrix Extensions (Intel® 
AMX) on Intel CPUs. 

With 128 physical cores, the CPU architecture provides 
specialized acceleration for AI operations, improving 
throughput and reducing latency in LLM inferencing and 
vector search workloads. The architecture supports matrix 
multiplication and efficiently handles models with billions of 
parameters. 

 
LLM Inference - To run LLM inferencing on the Intel 
hardware, the open-source Intel Extensions for PyTorch 
(IPEX) was used. IPEX has up to date optimizations for an 
extra performance boost on Intel hardware. The LLM model 
used was Meta-Llama3-8B-Instruct. The data type employed 
for the weights is ‘bfloat16’. Batch size of one was used. With 
using the intel pytorch extensions for inferencing, the 
LLAMA3-8B-Instruct gave a speed up of 17% with 3:1 
DRAM to CXL ratio versus using DRAM only memory. 

 
 
 
 
 
 

 
FAISS (Vector Search) - FAISS [7] is a library developed 
by Facebook AI for efficient similarity search and clustering 
of dense vectors. The dataset used was the Microsoft Turing- 
ANNS consisting of a raw vector space of one billion points 
with 100 dimensions, using L2 distance and k-NN method. 
As recommended by Meta [8], the index used was: 
OPQ128_256-IVF65536_HNSW32-PQ128x4fsr. This is an 
optimized FAISS index configuration that specifies a series 
of transformations and indexing methods for efficient 
similarity search. Here is a breakdown of what each part 
means: 

• OPQ128_256: Optimized Product Quantization 
rotates vectors for efficient encoding, with 128 and 
256 dimensions involved. 

• IVF65536: Inverted File Index with 65,536 clusters 
speeds up the search by dividing the vector space 
into clusters. 

• HNSW32: Hierarchical Navigable Small World 
graph with 32 neighbors, a graph-based method for 
approximate nearest neighbor search. 

• PQ128x4fsr: Product Quantization with 128 
dimensions and 4 subquantizers for further 
optimizations. 

The configuration combines several advanced techniques to 
create an efficient and scalable index for similarity search in 
large datasets. 

 
To report the final performance data, these parameters were 
configured: nprobe=4096 and efSearch=512. Both are crucial 
for balancing speed and accuracy in FAISS searches. A 
higher nprobe (number of clusters probed) increases accuracy 
but also search time. Similarly, efSearch (number of 
candidate nodes explored) enhances accuracy at the cost of 

search time. These values were optimized to achieve a high 
recall rate with minimal search time. The configuration 
resulted in a recall rate of 77% @ 10, meaning 77% of the 
true nearest neighbors are included in the top 10 results 
returned by the search algorithm. 

 
Weight 

(DRAM) 
Weight 
(CXL) 

Time 
(ms / query) 

Speedup 

1 0 0.545 1.00 
2 1 0.442 1.23 
5 2 0.454 1.20 

 
The FAISS workload demonstrated a 23% improvement with 
a DRAM to CXL ratio of 2:1. 

C. HPC Workloads 
HPC workloads stand for High performance workloads – 
those include OpenFOAM, HPCG, Xcompact3d, POT3D. 
These workloads typically require higher memory 
bandwidths in addition to increased capacity. 

 
OpenFOAM - OpenFOAM workload benchmarks are 
standardized test cases designed to evaluate the performance 
and scalability of hardware and software configurations when 
running OpenFOAM, an open-source computational fluid 
dynamics (CFD) software. These benchmarks simulate 
various fluid dynamics scenarios to assess how efficiently 
different systems handle complex CFD computations. The 
OpenFOAM drivaerFastback case was used with an input of 
approximately 200 million cells. The results from the 
benchmark for different DRAM/CXL ratios are shown 
below: 

 
Weight 

(DRAM) 
Weight 
(CXL) 

Execution 
time (s) 

Speedup 

1 0 254 1.00 
2 1 212 1.20 
5 2 209 1.22 
3 1 210 1.21 

 
The OpenFOAM workload has exhibited a 22% 
improvement with a DRAM to CXL ratio of 5:2. 

 
HPCG - The High-Performance Conjugate Gradients 
(HPCG) benchmark is a workload designed to assess 
supercomputing systems by solving a large, sparse linear 
system using a multigrid preconditioned conjugate gradient 
algorithm. Unlike the High Performance Linpack (HPL) 
benchmark, which focuses on dense matrix computations, 
HPCG emphasizes memory access patterns and data 
movement, reflecting the behavior of real-world scientific 
and engineering applications. By doing so, HPCG provides a 
more comprehensive measure of a system’s capability to 
handle complex, memory-intensive workloads. The input 
used was the following: x=192, y=192, z=192. Results are 
shown in the table below. 

 
Weight 

(DRAM) 
Weight 
(CXL) 

Performance 
(GFlops/s) 

Speedup 

1 0 92 1.00 
2 1 111 1.20 
5 2 113 1.23 
3 1 117 1.27 

Weight 
(DRAM) 

Weight 
(CXL) 

Output Token 
Latency (ms) 

Speedup 

1 0 42.91 1.00 
2 1 40.43 1.06 
5 2 37.54 1.14 
3 1 36.83 1.17 
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Figure 5. Summary of performance gains for the HPC and AI workloads running on DDR5-6400 (baseline) vs. DDR5-6400 + CXL. 
 

 
The HPCG benchmark has shown 27% improvement with 
DRAM: CXL = 3:1 

 
Xcompact3D - The Xcompact3D benchmark is a 
performance evaluation tool designed to assess 
computational efficiency when solving the incompressible 
Navier-Stokes equations using the Xcompact3D solver. It 
focuses on simulating fluid dynamics scenarios, such as the 
3D Taylor-Green Vortex, to measure how effectively a 
system manages high-order finite-difference computations. 
Researchers and engineers utilize this benchmark to evaluate 
and compare the performance of different hardware 
configurations and computational setups in fluid dynamics 
simulations. Results are shown in the table below. 

 
Weight 

(DRAM) 
Weight 
(CXL) 

Execution time 
(s) 

Speedup 

1 0 196 1.00 
2 1 221 0.89 
5 2 157 1.25 
3 1 159 1.24 

 
The benchmark has seen 25% improvement with DRAM: 
CXL = 5:2 

 
POT3D - The Pot3D benchmark is a computational 
performance benchmark that simulates the 3D Poisson 
equation, often used to measure the performance of 
processors and systems in handling scientific and engineering 
workloads. This benchmark calculates electrostatic potentials 
within a 3D space, which is important in fields like molecular 
dynamics and computational physics. Results are shown in 
the table below. 

 
Weight 

(DRAM) 
Weight 
(CXL) 

Execution 
time(s) 

Speedup 

1 0 687 1.00 
2 1 562 1.22 
5 2 539 1.27 
3 1 552 1.24 

The POT3D workload has demonstrated a 27% improvement 
with a DRAM to CXL ratio of 5:2. 

D. Putting it All Together 
Figure 3 below presents a comprehensive summary of the 
performance improvements observed across various HPC 
and AI workloads. These gains range from a 1.17x to a 
remarkable 1.30x enhancement, illustrating the effectiveness 
of integrating DDR5-6400 memory with CXL technology. 
By carefully calibrating the balance between DRAM and 
CXL memory allocations, an optimized execution 
configuration can be found for demanding computational 
tasks. For HPC and AI workloads, the geometric mean of 
performance speedups across all those workloads is 24%. 

 
A notable example of these performance gains is the POT3D 
workload, a high-performance computing (HPC) application. 
The improvements in memory bandwidth and latency 
reduction have translated into a faster execution of complex 
simulations, highlighting the transformative impact of CXL 
memory expansion in HPC environments. 

 
On the artificial intelligence (AI) front, the FAISS benchmark 
serves as a prime example. FAISS, an AI workload focused 
on similarity search, has shown a remarkable 23% 
improvement with the optimized DRAM:CXL ratio of 2:1. 
This gain is a testament to the enhanced memory bandwidth 
and performance scalability that CXL technology brings to 
AI applications. By leveraging the combined capabilities of 
DDR5-6400 and CXL-based memory expansion modules, 
FAISS can manage larger datasets and perform more efficient 
searches, thereby accelerating the overall AI processing 
pipeline. 

V. CONCLUSION 
The experimental results presented in this paper demonstrate 
that Micron’s CZ122 CXL memory modules used in software 
level ratio based weighted interleave configuration 
significantly enhance memory bandwidth for HPC and AI 
workloads when used on systems with Intel’s 6th Generation 
Xeon processors. 
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Key takeaways from this study include: 
• Significant improvements in system performance 

with the combination of CXL based memory 
expansion and native DDR5-6400 memory due to 
bandwidth improvements. 

• The optimization of the DRAM:CXL ratios as a 
critical factor in achieving these performance gains. 

• The potential for CXL technology to drastically 
elevate the capabilities of high-performance 
computing and artificial intelligence applications. 

The findings in this paper underscore the potential of CXL to 
significantly improve system efficiency and performance in 
demanding applications. Future research and development 
efforts should continue to explore and refine this integration, 
paving the way for even greater innovations in hybrid 
memory systems to meet the increasing computing demands 
for HPC and AI workloads. 
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